Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
3.
Phys Imaging Radiat Oncol ; 28: 100495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37876826

RESUMO

Background and purpose: Dual-energy computed tomography (DECT) is an emerging technology in radiotherapy (RT). Here, we investigate split-filter DECT throughout the RT treatment chain as compared to single-energy CT (SECT). Materials and methods: DECT scans were acquired with a tin-gold split-filter at 140 kV resulting in a low- and high-energy CT reconstruction (recon). Ten cancer patients (four head-and-neck (HN)​, three rectum​, two anal/pelvis and one abdomen) were DECT scanned without and with iodine administered. A cylindrical and an anthropomorphic HN phantom were scanned with DECT and 120 kV SECT. The DECT images generated were: 120 kV SECT-equivalent (CTmix), virtual monoenergetic images (VMIs), iodine map, virtual non-contrast (VNC), effective atomic number (Zeff), and relative electron density (ρe,w). The clinical utility of these recons was investigated for calibration, delineation, dose calculation and image-guided RT (IGRT). Results: A calibration curve for 75 keV VMI had a root-mean-square-error (RMSE) of 34 HU in closest agreement with the RSME of SECT calibration. This correlated with a phantom-based dosimetric agreement to SECT of γ1%1mm > 98%. A 40 keV VMI recon was most promising to improve tumor delineation accuracy with an average evaluation score of 1.6 corresponding to "partial improvement". The dosimetric impact of iodine was in general < 2%. For this setup, VNC vs. non-contrast CTmix based dose calculations are considered equivalent. SECT- and DECT-based IGRT was in agreement within the setup uncertainty. Conclusions: DECT-based RT could be a feasible alternative to SECT providing additional recons to support the different steps of the RT workflow.

4.
Radiother Oncol ; 184: 109675, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084884

RESUMO

BACKGROUND AND PURPOSE: Studies have shown large variations in stopping-power ratio (SPR) prediction from computed tomography (CT) across European proton centres. To standardise this process, a step-by-step guide on specifying a Hounsfield look-up table (HLUT) is presented here. MATERIALS AND METHODS: The HLUT specification process is divided into six steps: Phantom setup, CT acquisition, CT number extraction, SPR determination, HLUT specification, and HLUT validation. Appropriate CT phantoms have a head- and body-sized part, with tissue-equivalent inserts in regard to X-ray and proton interactions. CT numbers are extracted from a region-of-interest covering the inner 70% of each insert in-plane and several axial CT slices in scan direction. For optimal HLUT specification, the SPR of phantom inserts is measured in a proton beam and the SPR of tabulated human tissues is computed stoichiometrically at 100 MeV. Including both phantom inserts and tabulated human tissues increases HLUT stability. Piecewise linear regressions are performed between CT numbers and SPRs for four tissue groups (lung, adipose, soft tissue, and bone) and then connected with straight lines. Finally, a thorough but simple validation is performed. RESULTS: The best practices and individual challenges are explained comprehensively for each step. A well-defined strategy for specifying the connection points between the individual line segments of the HLUT is presented. The guide was tested exemplarily on three CT scanners from different vendors, proving its feasibility. CONCLUSION: The presented step-by-step guide for CT-based HLUT specification with recommendations and examples can contribute to reduce inter-centre variations in SPR prediction.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Consenso , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos , Calibragem
5.
Phys Med Biol ; 68(4)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36595276

RESUMO

Range uncertainty has been a key factor preventing particle radiotherapy from reaching its full physical potential. One of the main contributing sources is the uncertainty in estimating particle stopping power (ρs) within patients. Currently, theρsdistribution in a patient is derived from a single-energy CT (SECT) scan acquired for treatment planning by converting CT number expressed in Hounsfield units (HU) of each voxel toρsusing a Hounsfield look-up table (HLUT), also known as the CT calibration curve. HU andρsshare a linear relationship with electron density but differ in their additional dependence on elemental composition through different physical properties, i.e. effective atomic number and mean excitation energy, respectively. Because of that, the HLUT approach is particularly sensitive to differences in elemental composition between real human tissues and tissue surrogates as well as tissue variations within and among individual patients. The use of dual-energy CT (DECT) forρsprediction has been shown to be effective in reducing the uncertainty inρsestimation compared to SECT. The acquisition of CT data over different x-ray spectra yields additional information on the material elemental composition. Recently, multi-energy CT (MECT) has been explored to deduct material-specific information with higher dimensionality, which has the potential to further improve the accuracy ofρsestimation. Even though various DECT and MECT methods have been proposed and evaluated over the years, these approaches are still only scarcely implemented in routine clinical practice. In this topical review, we aim at accelerating this translation process by providing: (1) a comprehensive review of the existing DECT/MECT methods forρsestimation with their respective strengths and weaknesses; (2) a general review of uncertainties associated with DECT/MECT methods; (3) a general review of different aspects related to clinical implementation of DECT/MECT methods; (4) other potential advanced DECT/MECT applications beyondρsestimation.


Assuntos
Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Tomografia Computadorizada por Raios X/métodos , Incerteza , Calibragem , Imagens de Fantasmas
6.
Radiother Oncol ; 175: 34-41, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944744

RESUMO

PURPOSE/OBJECTIVE: Experimental in vivo determination of radiological tissue parameters of organs in the head and pelvis within a large patient cohort, expanding on the current standard human tissue database summarized in ICRU46. MATERIAL/METHODS: Relative electron density (RED), effective atomic number (EAN) and stopping-power ratio (SPR) were obtained from clinical dual-energy CT scans using a clinically validated DirectSPR implementation and organ segmentations of 107 brain-tumor (brain, brainstem, spinal cord, chiasm, optical nerve, lens) and 120 pelvic cancer patients (prostate, kidney, liver, bladder). The impact of contamination by surrounding tissues on the tissue parameters was reduced with a dedicated contour adaption routine. Tissue parameters were characterized regarding the cohort mean value as well as the variation within each patient (2σintra) and between patients (2σinter). For the brain, age-dependent differences were determined. RESULTS: For 10 organs, including 4 structures not listed in ICRU46, the mean RED, EAN and SPR as well as their respective intra- and inter-patient variation were determined. SPR intra-patient variation was higher than 1.3% (1.3-4.6%) in all organs and always exceeded the inter-patient variation of the organ mean SPR (0.6-2.1%). For the brain, a significant SPR variation between pediatric and non-pediatric patients was determined. CONCLUSION: Radiological tissue parameters in the head and pelvis were characterized in vivo for a large patient cohort using dual-energy CT. This reassesses parts of the current standard database defined in ICRU46, furthermore complementing the data described in literature by smaller substructures in the brain as well as by the quantification of organ-specific inter- and intra-patient variation.


Assuntos
Neoplasias Encefálicas , Tomografia Computadorizada por Raios X , Masculino , Humanos , Tomografia Computadorizada por Raios X/métodos , Cabeça , Encéfalo , Imagens de Fantasmas
7.
Radiother Oncol ; 166: 71-78, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774653

RESUMO

PURPOSE: To quantifiy the range uncertainty in proton treatment planning using dual-energy computed tomography (DECT) for a direct stopping-power prediction (DirectSPR) algorithm and its clinical implementation. METHODS AND MATERIALS: To assess the overall uncertainty in stopping-power ratio (SPR) prediction of a DirectSPR implementation calibrated for different patient geometries, the influencing factors were categorized in imaging, modeling as well as others. The respective SPR uncertainty was quantified for lung, soft tissue and bone and translated into range uncertainty for several tumor types. The amount of healthy tissue spared was quantified for 250 patients treated with DirectSPR and the dosimetric impact was evaluated exemplarily for a representative brain-tumor patient. RESULTS: For bone, soft tissue and lung, an SPR uncertainty (1σ) of 1.6%, 1.3% and 1.3% was determined for DirectSPR, respectively. This allowed for a reduction of the clinically applied range uncertainty from currently (3.5% + 2 mm) to (1.7% + 2 mm) for brain-tumor and (2.0% + 2 mm) for prostate-cancer patients. The 150 brain-tumor and 100 prostate-cancer patients treated using DirectSPR benefitted from sparing on average 2.6 mm and 4.4 mm of healthy tissue in beam direction, respectively. In the representative patient case, dose reduction in organs at risk close to the target volume was achieved, with a mean dose reduction of up to 16% in the brainstem. Patient-specific DECT-based treatment planning with reduced safety margins was successfully introduced into clinical routine. CONCLUSIONS: A substantial increase in range prediction accuracy in clinical proton treatment planning was achieved by patient-specific DECT-based SPR prediction. For the first time, a relevant imaging-based reduction of range prediction uncertainty on a 2% level has been achieved.


Assuntos
Neoplasias Encefálicas , Neoplasias da Próstata , Terapia com Prótons , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Terapia com Prótons/métodos , Prótons , Radiometria , Tomografia Computadorizada por Raios X/métodos
8.
Int J Radiat Oncol Biol Phys ; 111(4): 1033-1043, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229052

RESUMO

PURPOSE: Uncertainty in computed tomography (CT)-based range prediction substantially impairs the accuracy of proton therapy. Direct determination of the stopping-power ratio (SPR) from dual-energy CT (DECT) has been proposed (DirectSPR), and initial validation studies in phantoms and biological tissues have proven a high accuracy. However, a thorough validation of range prediction in patients has not yet been achieved by any means. Here, we present the first systematic validation of CT-based proton range prediction in patients using prompt gamma imaging (PGI). METHODS AND MATERIALS: A PGI slit camera system with improved positioning accuracy, using a floor-based docking station, was used. Its overall uncertainty for range prediction validation was determined experimentally with both x-ray and beam measurements. The accuracy of range prediction in patients was determined from clinical PGI measurements during hypofractionated treatment of 5 patients with prostate cancer - in total 30 fractions with in-room control-CTs. For each pencil-beam-scanning spot, the range shift was obtained by comparing the PGI measurement to a control-CT-based PGI simulation. Three different SPR prediction approaches were applied in simulations: a standard CT-number-to-SPR conversion (Hounsfield look-up table [HLUT]), an adapted HLUT (DECT optimized), and DirectSPR. The spot-wise weighted mean range shift from all spots served as a measure for the accuracy of the respective range prediction approach. RESULTS: A mean range prediction accuracy of 0.0% ± 0.5%, 0.3% ± 0.4%, and 1.8% ± 0.4% was obtained for DirectSPR, adapted HLUT, and standard HLUT, respectively. The overall validation uncertainty of the second-generation PGI slit camera is about 1 mm (2σ) for all approaches, which is smaller than the range prediction uncertainty for deep-seated tumors. CONCLUSIONS: For the first time, range prediction accuracy was assessed in clinical routine using PGI range verification in prostate cancer treatments. Both DECT-derived range prediction approaches agree well with the measured proton range from PGI verification, whereas the standard HLUT approach differs relevantly. These results endorse the recent reduction of clinical safety margins in DirectSPR-based treatment planning in our institution.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Prótons , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
9.
Radiother Oncol ; 163: 7-13, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329653

RESUMO

PURPOSE: Experimental assessment of inter-centre variation and absolute accuracy of stopping-power-ratio (SPR) prediction within 17 particle therapy centres of the European Particle Therapy Network. MATERIAL AND METHODS: A head and body phantom with seventeen tissue-equivalent materials were scanned consecutively at the participating centres using their individual clinical CT scan protocol and translated into SPR with their in-house CT-number-to-SPR conversion. Inter-centre variation and absolute accuracy in SPR prediction were quantified for three tissue groups: lung, soft tissues and bones. The integral effect on range prediction for typical clinical beams traversing different tissues was determined for representative beam paths for the treatment of primary brain tumours as well as lung and prostate cancer. RESULTS: An inter-centre variation in SPR prediction (2σ) of 8.7%, 6.3% and 1.5% relative to water was determined for bone, lung and soft-tissue surrogates in the head setup, respectively. Slightly smaller variations were observed in the body phantom (6.2%, 3.1%, 1.3%). This translated into inter-centre variation of integral range prediction (2σ) of 2.9%, 2.6% and 1.3% for typical beam paths of prostate-, lung- and primary brain-tumour treatments, respectively. The absolute error in range exceeded 2% in every fourth participating centre. The consideration of beam hardening and the execution of an independent HLUT validation had a positive effect, on average. CONCLUSION: The large inter-centre variations in SPR and range prediction justify the currently clinically used margins accounting for range uncertainty, which are of the same magnitude as the inter-centre variation. This study underlines the necessity of higher standardisation in CT-number-to-SPR conversion.


Assuntos
Terapia com Prótons , Humanos , Masculino , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Incerteza
10.
Phys Med Biol ; 66(5)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33227715

RESUMO

The treatment of cancer with proton radiation therapy was first suggested in 1946 followed by the first treatments in the 1950s. As of 2020, almost 200 000 patients have been treated with proton beams worldwide and the number of operating proton therapy (PT) facilities will soon reach one hundred. PT has long moved from research institutions into hospital-based facilities that are increasingly being utilized with workflows similar to conventional radiation therapy. While PT has become mainstream and has established itself as a treatment option for many cancers, it is still an area of active research for various reasons: the advanced dose shaping capabilities of PT cause susceptibility to uncertainties, the high degrees of freedom in dose delivery offer room for further improvements, the limited experience and understanding of optimizing pencil beam scanning, and the biological effect difference compared to photon radiation. In addition to these challenges and opportunities currently being investigated, there is an economic aspect because PT treatments are, on average, still more expensive compared to conventional photon based treatment options. This roadmap highlights the current state and future direction in PT categorized into four different themes, 'improving efficiency', 'improving planning and delivery', 'improving imaging', and 'improving patient selection'.


Assuntos
Neoplasias , Terapia com Prótons , Biologia , Humanos , Neoplasias/radioterapia , Fótons , Física , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
11.
Med Phys ; 47(12): 6151-6162, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33118161

RESUMO

PURPOSE: Increased radiation response after proton irradiation, such as late radiation-induced toxicity, is determined by high dose and elevated linear energy transfer (LET). Steep dose-averaged LET (LETd ) gradients and elevated LETd occur at the end of proton range and might be particularly sensitive to uncertainties in range prediction. Therefore, this study quantified LETd distributions and the impact of range uncertainty in robust dose-optimized proton treatment plans and assessed the biological effect in normal tissues and tumors of patients. METHODS: For each of six cancer patients (two brain, head-and-neck, and prostate), two nominal treatment plans were robustly dose optimized using single- and multi-field optimization, respectively. For each plan, two additional scenarios with ±3.5% range deviation relative to the nominal plan were derived by global rescaling of stopping-power ratios. Dose and LETd distributions were calculated for each scenario using the beam parameters of the corresponding nominal plan. The variability in relative biological effectiveness (RBE) and probability of late radiation-induced brain toxicity (PIC ) was assessed. RESULTS: The optimization technique (single- vs multi-field) had a negligible impact on the LETd distributions in the clinical target volume (CTV) and in most organs at risk (OARs). LETd distributions in the CTV were rather homogeneous with arithmetic mean of LETd below 3.2 keV/µm and robust against range deviations. The RBE variability within the CTV induced by range uncertainty was small (≤0.05, 95% confidence interval). In OARs, LETd hotspots (>7 keV/µm) occurred and LETd distributions were inhomogeneous and sensitive to range deviations. LETd hotspots and the impact of range deviations were most prominent in OARs of brain tumor patients which translated in RBE values exceeding 1.1 in all brain OARs. The near-maximum predicted PIC in healthy brain tissue of brain tumor patients was smaller than 5% and occurred adjacent to the CTV. Range deviations induced absolute differences in PIC up to 1.2%. CONCLUSIONS: Robust dose optimization generates LETd distributions in the target volume robust against range deviations. The current findings support using a constant RBE within the CTV. The impact of range deviations on the considered probability of late radiation-induced toxicity in brain tissue was limited for robust dose-optimized treatment plans. Incorporation of LETd in robust optimization frameworks may further reduce uncertainty related to the RBE-weighted dose estimation in normal tissues.


Assuntos
Terapia com Prótons , Sistemas de Distribuição no Hospital , Humanos , Transferência Linear de Energia , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Incerteza
12.
Phys Med Biol ; 65(18): 185004, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32460261

RESUMO

Motivation and objective. For each institute, the selection and calibration of the most suitable approach to assign material properties for Monte Carlo (MC) patient simulation in proton therapy is a major challenge. Current conventional approaches based on computed tomography (CT) depend on CT acquisition and reconstruction settings. This study proposes a material assignment approach, referred to as MATA (MATerial Assignment), which is independent of CT scanner properties and, therefore, universally applicable by any institute. MATERIALS AND METHODS: The MATA approach assigns material properties to the physical quantity stopping-power ratio (SPR) using a set of 40 material compositions specified for human tissues and linearly determined mass density. The application of clinically available CT-number-to-SPR conversion avoids the need for any further calibration. The MATA approach was validated with homogeneous and heterogeneous SPR datasets by assessing the SPR accuracy after material assignment obtained either based on dose scoring or determination of water-equivalent thickness. Finally, MATA was applied on patient datasets to evaluate dose differences induced by different approaches for material assignment and SPR prediction. RESULTS: The deviation between the SPR after material assignment and the input SPR was close to zero in homogeneous datasets and below 0.002 (0.2% relative to water) in heterogeneous datasets, which was within the systematic uncertainty in SPR estimation. The comparison of different material assignment approaches revealed relevant differences in dose distribution and SPR. The comparison between two SPR prediction approaches, a standard look-up table and direct SPR determination from dual-energy CT, resulted in patient-specific mean proton range shifts between 1.3 mm and 4.8 mm. CONCLUSION: MATA eliminates the need for institution-specific adaptations of the material assignment. It allows for using any SPR dataset and thus facilitates the implementation of more accurate SPR prediction approaches. Hence, MATA provides a universal solution for patient modeling in MC-based proton treatment planning.


Assuntos
Método de Monte Carlo , Modelagem Computacional Específica para o Paciente , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Calibragem , Humanos , Modelos Biológicos , Tomografia Computadorizada por Raios X , Incerteza
13.
Med Phys ; 47(4): 1796-1806, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32037543

RESUMO

BACKGROUND AND PURPOSE: Proton treatment planning relies on an accurate determination of stopping-power ratio (SPR) from x-ray computed tomography (CT). A refinement of the heuristic CT-based SPR prediction using a state-of-the-art Hounsfield look-up table (HLUT) is proposed, which incorporates patient SPR information obtained from dual-energy CT (DECT) in a retrospective patient-cohort analysis. MATERIAL AND METHODS: SPR datasets of 25 brain-tumor patients, 25 prostate-cancer patients, and three nonsmall cell lung-cancer (NSCLC) patients were calculated from clinical DECT scans with the comprehensively validated DirectSPR approach. Based on the median frequency distribution of voxelwise correlations between CT number and SPR within the irradiated volume, a piecewise linear function was specified (DirectSPR-based adapted HLUT). Differences in dose distribution and proton range were assessed for the nonadapted and adapted HLUT in comparison to the DirectSPR method, which has been shown to be an accurate and reliable SPR estimation method. RESULTS: The application of the DirectSPR-based adapted HLUT instead of the nonadapted HLUT reduced the systematic proton range differences from 1.2% (1.1 mm) to -0.1% (0.0 mm) for brain-tumor patients, 1.7% (4.1 mm) to 0.2% (0.5 mm) for prostate-cancer patients, and 2.0% (2.9 mm) to -0.1% (0.0 mm) for NSCLC patients. Due to the large intra- and inter-patient tissue variability, range differences to DirectSPR larger than 1% remained for the adapted HLUT. CONCLUSIONS: The incorporation of patient-specific correlations between CT number and SPR, derived from a retrospective application of DirectSPR to a broad patient cohort, improves the SPR accuracy of the current state-of-the-art HLUT approach. The DirectSPR-based adapted HLUT has been clinically implemented at the University Proton Therapy Dresden (Dresden, Germany) in 2017. This already facilitates the benefits of an improved DECT-based tissue differentiation within clinical routine without changing the general approach for range prediction (HLUT), and represents a further step toward full integration of the DECT-based DirectSPR method for treatment planning in proton therapy.


Assuntos
Prótons , Tomografia Computadorizada por Raios X/métodos , Humanos , Radiometria , Estudos Retrospectivos
14.
Br J Radiol ; 93(1107): 20190590, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31642709

RESUMO

Pre-treatment CT imaging is a topic of growing importance in particle therapy. Improvements in the accuracy of stopping-power prediction are demanded to allow for a dose conformality that is not inferior to state-of-the-art image-guided photon therapy. Although range uncertainty has been kept practically constant over the last decades, recent technological and methodological developments, like the clinical application of dual-energy CT, have been introduced or arise at least on the horizon to improve the accuracy and precision of range prediction. This review gives an overview of the current status, summarizes the innovations in dual-energy CT and its potential impact on the field as well as potential alternative technologies for stopping-power prediction.


Assuntos
Terapia com Prótons , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Incerteza , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Fótons/uso terapêutico , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Radioterapia Guiada por Imagem/instrumentação , Tomografia Computadorizada por Raios X/instrumentação
15.
Int J Radiat Oncol Biol Phys ; 105(3): 504-513, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271828

RESUMO

PURPOSE: Range prediction in particle therapy is associated with an uncertainty originating from calculating the stopping-power ratio (SPR) based on x-ray computed tomography (CT). Here, we assessed the intra- and inter-patient variability of tissue properties in patients with primary brain tumor using dual-energy CT (DECT) and quantified its influence on current SPR prediction. METHODS AND MATERIALS: For 102 patients' DECT scans, SPR distributions were derived from a patient-specific DECT-based approach (DirectSPR). The impact of soft tissue diversity and age-related variations in bone composition on SPR were assessed. Tissue-specific and global deviations between this method and the state-of-the-art CT-number-to-SPR conversion applying a Hounsfield look-up table (HLUT) were quantified. To isolate systematic deviations between the two, the HLUT was also optimized using DECT information. RESULTS: An intra-patient ± inter-patient soft tissue diversity of 5.6% ± 0.7% in SPR (width of 95% confidence interval) was obtained including imaging- and model-related variations of up to 2.9%. This intra-patient SPR variability is associated with a mean absolute SPR deviation of 1.2% between the patient-specific DirectSPR approach and an optimal HLUT. Between adults and children younger than 6 years, age-related variations in bone composition resulted in a median SPR difference of approximately 5%. CONCLUSIONS: Accurate patient-specific DECT-based stopping-power prediction allows for improved handling of tissue mixtures and can intrinsically incorporate most of the SPR variability arising from tissue mixtures as well as inter-patient and intra-tissue variations. Since the state-of-the-art HLUT-even after cohort-specific optimization-cannot fully consider the broad tissue variability, patient-specific DECT-based stopping-power prediction is advisable in particle therapy.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Tecido Adiposo/diagnóstico por imagem , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Intervalos de Confiança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Estudos Retrospectivos , Razão Sinal-Ruído , Incerteza , Adulto Jovem
16.
Sci Rep ; 9(1): 4126, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858409

RESUMO

In radiotherapy, computed tomography (CT) datasets are mostly used for radiation treatment planning to achieve a high-conformal tumor coverage while optimally sparing healthy tissue surrounding the tumor, referred to as organs-at-risk (OARs). Based on CT scan and/or magnetic resonance images, OARs have to be manually delineated by clinicians, which is one of the most time-consuming tasks in the clinical workflow. Recent multi-atlas (MA) or deep-learning (DL) based methods aim to improve the clinical routine by an automatic segmentation of OARs on a CT dataset. However, so far no studies investigated the performance of these MA or DL methods on dual-energy CT (DECT) datasets, which have been shown to improve the image quality compared to conventional 120 kVp single-energy CT. In this study, the performance of an in-house developed MA and a DL method (two-step three-dimensional U-net) was quantitatively and qualitatively evaluated on various DECT-derived pseudo-monoenergetic CT datasets ranging from 40 keV to 170 keV. At lower energies, the MA method resulted in more accurate OAR segmentations. Both the qualitative and quantitative metric analysis showed that the DL approach often performed better than the MA method.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/radioterapia , Humanos , Imageamento por Ressonância Magnética/métodos , Órgãos em Risco
18.
Int J Radiat Oncol Biol Phys ; 102(4): 830-840, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30003998

RESUMO

PURPOSE: Single-source dual-spiral dual-energy computed tomography (DECT) provides additional patient information but is prone to motion between the 2 consecutively acquired computed tomography (CT) scans. Here, the clinical applicability of dual-spiral time-resolved DECT (4D-DECT) for proton treatment planning within the thoracic region was evaluated. METHODS AND MATERIALS: Dual-spiral 4D-DECT scans of 3 patients with lung cancer were acquired. For time-averaged datasets and 4 breathing phases, the geometric conformity of 80 kVp and 140 kVp 4D-DECT scans before image post-processing was assessed by normalized cross correlation (NCC). Additionally, the conformity of the corresponding DECT-derived 58 keV and 79 keV pseudo-monoenergetic CT datasets after image post-processing, including deformable image registration (DIR), was determined. To analyze the reliability of proton dose calculation, clinical (PlanClin) and artificial worst-case (PlanWorstCase, targeting the diaphragm) treatment plans were calculated on 140 kVp and 79 keV datasets and compared with gamma analyses (0.1% dose-difference and 1 mm distance-to-agreement criterion). The applicability of a patient-specific DECT-based prediction of stopping-power ratio (SPR) was investigated and proton range shifts compared with the clinical heuristic CT-number-to-SPR conversion were assessed. Finally, the delineation variability of an experienced radiation oncologist was quantified. RESULTS: Dual-spiral 4D-DECT scans without DIR showed a high geometric conformity, with an average NCC ± standard deviation of 98.7% ± 1.0% when including all patient voxels or 88.2% ± 7.8% when considering only lung. DIR improved the conformity, leading to an average NCC of 99.9% ± 0.1% and 99.6% ± 0.5%, respectively. PlanClin dose distributions on 140 kVp and 79 keV datasets were similar, with an average gamma passing rate of 99.9% (99.2%-100%). The worst-case evaluation still revealed high passing rates (99.3% on average, 92.4% as minimum). Clinically relevant mean range shifts of 2.2% ± 1.2% were determined between patient-specific DECT-based SPR prediction and clinical heuristic CT-number-to-SPR conversion. The intra-observer delineation variability was slightly reduced using additional DECT-derived datasets. CONCLUSIONS: The 79 keV pseudo-monoenergetic CT datasets can be consistently obtained from dual-spiral 4D-DECT and are applicable for dose calculation. Patient-specific DECT-based SPR prediction performed well and potentially reduces range uncertainty in proton therapy of patients with lung cancer.


Assuntos
Tomografia Computadorizada Quadridimensional/métodos , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Dosagem Radioterapêutica , Carga Tumoral
20.
Phys Med Biol ; 63(2): 025001, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29239855

RESUMO

An experimental setup for consecutive measurement of ion and x-ray absorption in tissue or other materials is introduced. With this setup using a 3D-printed sample container, the reference stopping-power ratio (SPR) of materials can be measured with an uncertainty of below 0.1%. A total of 65 porcine and bovine tissue samples were prepared for measurement, comprising five samples each of 13 tissue types representing about 80% of the total body mass (three different muscle and fatty tissues, liver, kidney, brain, heart, blood, lung and bone). Using a standard stoichiometric calibration for single-energy CT (SECT) as well as a state-of-the-art dual-energy CT (DECT) approach, SPR was predicted for all tissues and then compared to the measured reference. With the SECT approach, the SPRs of all tissues were predicted with a mean error of (-0.84 ± 0.12)% and a mean absolute error of (1.27 ± 0.12)%. In contrast, the DECT-based SPR predictions were overall consistent with the measured reference with a mean error of (-0.02 ± 0.15)% and a mean absolute error of (0.10 ± 0.15)%. Thus, in this study, the potential of DECT to decrease range uncertainty could be confirmed in biological tissue.


Assuntos
Osso e Ossos/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Prótons , Tomografia Computadorizada por Raios X/métodos , Animais , Osso e Ossos/efeitos da radiação , Encéfalo/efeitos da radiação , Calibragem , Bovinos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Pulmão/efeitos da radiação , Suínos , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...